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Chapter 5

Univariate Time Series: Volatility
Models

5.1 Introduction

In Chapter 3 we have considered approaches to modelling conditional mean of a
univariate time series. However, many areas of financial theory are concerned with
the second moment of time series – conditional volatility as a proxy for risk.

In this chapter we introduce time series models that represent the dynamics
of conditional variances. In particular we consider ARCH, GARCH model as well
as their extensions.

The reader is also referred to Engle (1982), Bollerslev (1986), Nelson (1991),
Hamilton (1994), Enders (2004), Zivot and Wang (2006).

5.2 The ARCH Model

Besides a time varying conditional mean of financial time series, most of them also
exhibit changes in volatility regimes. This is especially applicable to many high
frequency macroeconomic and financial time series.

While modelling such time series, we cannot use homoscedastic models. The
simplest way to allow volatility to vary is to model conditional variance using a
simple autoregressive (AR) process.

Let Yt denote a stationary time series, then Yt can be expressed as its mean
plus a white noise:

Yt = c+ ut (5.2.1)

where c is the mean of Yt, and ut is i.i.d. with mean zero. To allow for conditional
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heteroscedasticity, assume that

vart−1[ut] = σ2
t .

Here vart−1 denotes the variance conditional on information at time t − 1, and is
modelled in the following way:

σ2
t = α0 + α1u

2
t−1 + ...+ αpu

2
t−p. (5.2.2)

In order to show that this specification is equivalent to AR representation of squared
residuals, note that vart−1[ut] = E

[
u2
t−1

]
= σ2

t since E[ut] = 0. Thus, equation
(5.2.2) can be rewritten as:

u2
t = α0 + α1u

2
t−1 + ...+ αpu

2
t−p + εt, (5.2.3)

where εt = u2
t − Et−1 [u

2
t ] is a zero mean white noise process. The model in (5.2.1)

and (5.2.3) is known as the autoregressive conditional heteroscedasticity (ARCH)
model of Engle (1982), which is usually referred to as the ARCH(p) model. More
generally, ARCH model can be rewritten as

Yt = c+ ut

ut = σtηt

σ2
t = α0 + α1u

2
t−1 + ...+ αpu

2
t−p,

where ηt is an iid normal random variable.

5.2.1 Example: Simulating an ARCH(p) model in EViews

It is relatively easy to simulate ARCH process in EViews. Let us consider as example
the following ARCH(2) model

Yt = σtηt

σ2
t = 3.5 + 0.5Y 2

t−1 + 0.48Y 2
t−2 (5.2.4)

with ηt being independent random variables following N(0, 1)distribution. Similarly
to ARMA process we need to generate error term process ηt and first two initial
values of Yt after which the whole process can be simulated. Create a new workfile
and in the command line enter

smpl @all

series eta=nrnd

smpl @first @first+1
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series y=@sqrt(3.5/(0.5+0.48))*eta

smpl @first+2 @last

y=@sqrt(3.5+0.5*y(-1)∧2+0.48*y(-2)∧2)*eta

smpl @all

The last statement is included to ensure that we come back the whole data range.
The plot of the simulated series is given in the following figure.

Figure 5.1: Plot of simulated ARCH process
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Univariate Time Series: Volatility Models

Visually, the process looks stationary, mean reverting and with zero mean as
expected from the equation (5.2.4).

Testing for ARCH Effects In order to test for the presence of ARCH effects
in the residuals, we can use AR representation of squared residuals in the following
way. Based on equation (5.2.2), construct an auxiliary regression

û2
t = α0 + α1û

2
t−1 + ...+ αpû

2
t−p + εt, (5.2.5)

. The significance of parameters αi would indicate the presence of conditional volatil-
ity. Under the null hypothesis that there are no ARCH effects:

α1 = α2 = ... = αp = 0,

the test statistic LM = TR2 a∼ χ2
p where T is the sample size and R2 is computed

from the regression (5.2.5).

5.3 The GARCH Model

More general form of conditional volatility is based on ARMA specification as an
extension of AR process of squared residuals. Bollerslev (1986) introduces GARCH
model (which stands for generalized ARCH) where he replaces the AR model in
(5.2.2) by:

σ2
t = α0 +

p∑
i=1

αiu
2
t−i +

q∑
j=1

βiσ
2
t−j, (5.3.1)

where the coefficients αi and βj are positive to ensure that the conditional variance
σ2
t is always positive. In order to emphasize the number of lags used in (5.3.1) we

denote the model by GARCH(p, q).
When q = 0, the GARCH model reduces to the ARCH model. Under the

GARCH(p, q) model, the conditional variance of ut, σ2
t , depends on the squared

residuals in the previous p periods, and the conditional variance in the previous q

periods. The most commonly used model is a GARCH(1, 1) model with only three
parameters in the conditional variance equation.

A GARCH model can be expressed as an ARMA model of squared residuals.
For example, for a GARCH(1, 1) model:

σ2
t = α0 + α1u

2
t−1 + β1σ

2
t−1.

Since Et−1 [u
2
t ] = σ2

t , the above equation can be rewritten as:

u2
t = α0 + (α1 + β1)u

2
t−1 + εt − β1εt−1, (5.3.2)
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Univariate Time Series: Volatility Models

which is an ARMA(1, 1) model. Here εt = u2
t − Et−1 [u

2
t ] is the white noise error

term.
Given the ARMA representation of the GARCH model, we conclude that

stationarity of the GARCH(1, 1) model requires α1 + β1 < 1. The unconditional
variance of ut is given by

var[ut] = E
[
u2
t

]
= α0/(1− α1 − β1),

Indeed, from (5.3.2)

E
[
u2
t

]
= α0 + (α1 + β1)E

[
u2
t−1

]

and thus E [u2
t ] = α0 + (α1 + β1)E[u2

t ] since u2
t is stationary. For the general

GARCH(p, q) model (5.3.2), the squared residuals u2
t behave like an ARMA(max(p, q), q)

process.
One can identify the orders of the GARCH model using the correlogram of the

squared residuals. They will coincide with ARMA orders of the squared residuals
of the time series.

GARCH Model and Stylized Facts In practice, researchers have uncovered
many so-called stylized facts about the volatility of financial time series; Bollerslev,
Engle and Nelson (1994) give a complete account of these facts. Using the ARMA
representation of GARCH models shows that the GARCH model is capable of ex-
plaining many of those stylized facts. This section will focus on three important
ones: volatility clustering, fat tails, and volatility mean reversion. Other stylized
facts are illustrated and explained in later sections.

Volatility Clustering Usually the GARCH coefficient β1 is found to be
around 0.9 for many weekly or daily financial time series. Given this value of β1, it
is obvious that large values of σ2

t−1 will be followed by large values of σ2
t , and small

values of σ2
t−1 will be followed by small values of σ2

t . The same reasoning can be
obtained from the ARMA representation in (5.3.2), where large/small changes in
u2
t−1 will be followed by large/small changes in σ2

t .
Fat Tails It is well known that the distribution of many high frequency fi-

nancial time series usually have fatter tails than a normal distribution. This means
that large changes are more often to occur than under a normal distribution. Thus
a GARCH model can replicate the fat tails usually observed in financial time series.

Volatility Mean Reversion Although financial markets may experience ex-
cessive volatility from time to time, it appears that volatility will eventually settle
down to a long run level. The previous subsection showed that the long run variance
of ut for the stationary GARCH(1, 1) model is α0/(1 − α1 − β1). In this case, the
volatility is always pulled toward this long run level.
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5.3.1 Example: Simulating an GARCH(p, q) model in EViews

It is slightly trickier to simulate GARCH process than the ARCH one in EViews.
Since it is necessary simultaneously to generate Yt and σt processes, we will need to
use loop to accomplish it. Therefore, it is more convenient to use program object
rather than doing it in the command line. Consider as an example GARCH(2, 1)

series

Yt = σtηt

σ2
t = 3.5 + 0.5Y 2

t−1 + 0.28Y 2
t−2 + 0.2σ2

t−1 (5.3.3)

We start the program with the same commands as in the ARCH case; the only
difference is that we generate a conditional variance process s.

smpl @all

series eta=nrnd

scalar n=@obs(eta)

smpl @first @first+1

series s=3.5/(0.5+0.28+0.2)

series y=@sqrt(s)*eta
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The next part of the program creates the loop where both series Yt and σ2
t are

generated observation after observation.

for !i=2 to n-2

smpl @first+!i @first+!i

s=3.5+0.5*y(-1)∧2+0.28*y(-2)∧2+0.2*s(-1)

y=@sqrt(s)*eta

next

smpl @all

The graph of the simulated GARCH process is given on Figure ??.

Figure 5.2: Plot of the simulated GARCH process

We can see on the graph a clear effect of volatility clustering. In most cases
volatility stays low but there are several spikes with high volatility which persist for a
number of periods. Another stylized fact can be seen from the histogram of the simu-
lated observations (click on View/Descriptive Statistic and Tests/Histogram
and Stats). Jarque-Bera test strongly rejects the null hypothesis of normality and
the kurtosis is extremely high indicating fat tails of the generated distribution.

5.4 GARCH model estimation

This section illustrates how to estimate a GARCH model. Assuming that ut follows
normal or Gaussian distribution conditional on past history, the prediction error
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Figure 5.3: Histogram of the simulated GARCH process

decomposition of the log-likelihood function of the GARCH model conditional on
initial values is:

logL = −T

2
log(2π)− 1

2

T∑
i=1

log
(
σ2
t

)
− 1

2

T∑
i=1

u2
t

σ2
t

.

The unknown model parameters c, αi (i = 0, ..., p) and βj, (j = 1, ..., q) can be
estimated using conditional maximum likelihood estimation (MLE). Details of the
maximization are given in Hamilton (1994). Once the MLE estimates of the pa-
rameters are found, estimates of the time varying volatility σ2 (t = 1, ..., T ) are also
obtained as a side product.

5.5 GARCH Model Extensions

In many cases, the basic GARCH model (5.3.2) provides a reasonably good model
for analyzing financial time series and estimating conditional volatility. However,
there are some aspects of the model which can be improved so that it can better
capture the characteristics and dynamics of a particular time series.

In the basic GARCH model, since only squared residuals u2
t−i enter the equa-

tion, the signs of the residuals or shocks have no effects on conditional volatility.
However, a stylized fact of financial volatility is that bad news (negative shocks)
tends to have a larger impact on volatility than good news (positive shocks).
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5.5.1 EGARCH Model

Nelson (1991) proposed the following exponential GARCH (EGARCH) model to
allow for leverage effects:

ht = α0 +

p∑
i=1

αi
|ut−i|+ γiut−i

σt−i

+

q∑
i=1

ht−j,

where ht = log σ2
t . Note that when ut−i is positive, the total effect of ut−i is (1 +

γi)|ut−i|; in contrast, when ut−i is negative, the total effect of ut−i is (1 − γi)|ut−i|.
Bad news can have a larger impact on volatility, and the value of γi would be
expected to be negative.

5.5.2 TGARCH Model

Another GARCH variant that is capable of modeling leverage effects is the threshold
GARCH (TGARCH) model, which has the following form:

σ2
t = α0 +

p∑
i=1

αiu
2
t−i +

p∑
i=1

αiSt−iu
2
t−i +

q∑
j=1

βjσ
2
t−j,

where

St−i =

{
1 ut−i < 0

0 ut−i ≥ 0
.
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That is, depending on whether ut−i is above or below the threshold value of
zero, u2

t−i has different effects on the conditional variance σ2
t : when ut−i is positive,

the total effects are given by αiu
2
t−i; when ut−i is negative, the total effects are given

by (αi + γi)u
2
t−i. So one would expect γi to be positive for bad news to have larger

impacts.

5.5.3 PGARCH Model

The basic GARCH model can be also extended to allow for leverage effects. This is
made possible by treating the basic GARCH model as a special case of the power
GARCH (PGARCH) model proposed by Ding and (1993) (1993):

σd
t = α0 +

p∑
i=1

αi (|ut−i|+ γiut−i)
d +

q∑
j=1

βjσ
d
t−j, (5.5.1)

where d is a positive exponent, and γi denotes the coefficient of leverage effects.
Note that when d = 2, (5.5.1) reduces to the basic GARCH model with leverage
effects.

Two Components Model The GARCH model can be used to model mean
reversion in conditional volatility. Recall the mean reverting form of the basic
GARCH(1, 1) model:

(u2
t − σ̄2) = (α1 + β1)(u

2
t−1 − σ̄2) + εt − β1εt−1,

where σ̄2 = α0/(1−α1−β1) is the unconditional long run level of volatility which is
constant over time. Engle and Lee (1999) propose a model with time varying long
run volatility level. The general form of the two components model is:

σ2
t = qt + st (5.5.2)

qdt = α1|ut−1|d + β1q
d
t−1 (5.5.3)

sdt = α0 + α2|ut−1|d + β2s
d
t−1. (5.5.4)

The long run component qt follows a highly persistent PGARCH(1, 1) model, and
the transitory component st follows another PGARCH(1, 1) model.

GARCH-in-the-Mean Model In financial investment, high risk is often
expected to lead to high returns. Although modern capital asset pricing theory does
not imply such a simple relationship, it does suggest there are some interactions
between expected returns and risk as measured by volatility. Engle, Lilien and
Robins (1987) propose to extend the basic GARCH model so that the conditional
volatility can generate a risk premium which is part of the expected returns. This
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extended GARCH model is often referred to as GARCH-in-the-mean (GARCH-M)
model.

The GARCH-M model extends the conditional mean equation (5.2.1) as fol-
lows:

Yt = c+ αg(σt) + ut,

where g(·) can be an arbitrary function of volatility σt.
Exogenous Variables in Conditional Mean So far the conditional mean

equation has been restricted to a constant when considering GARCH models, except
for the GARCH-M model where volatility was allowed to enter the mean equation
as an explanatory variable. It is possible to add ARMA terms as well as exogenous
explanatory variables in the conditional mean equation. A more general form for
the conditional mean equation is

Yt = c+ δ′Xt + ut

where Xt is a k × 1 vector of regressors and δ is a vector of coefficients.
Also, one can add explanatory variables into the conditional variance formula

which may have impacts on conditional volatility.
Error Distributions In all the examples illustrated so far, a normal error

distribution has been exclusively used. However, given the well known fat tails in
financial time series, it may be more desirable to use a distribution which has fatter
tails than the normal distribution.

EViews allows two fat-tailed error distributions for fitting GARCH models:
the Student t distribution and the generalized error distribution.

5.5.4 Prediction

GARCH models are frequently used to forecast volatility of return. It is straight-
forward to forecast the conditional variance from an ARCH model. Assuming that
the model parameters are known, the one-period ahead forecast is

σ2
t+1|t = α0 + α1u

2
t + ...+ αpu

2
t−p+1

Forecasting the conditional volatility for h periods ahead can be done by a recursion

σ2
t+h|t = α0 + α1σ

2
t+h−1|t + ...+ αpσ

2
t+h−p,

where σ2
t+j = u2

t+j for j ≤ 0.
The h-period ahead variance forecast for a GARCH(1, 1) model is

σ2
t+1|t = α0

[
h−1∑
i=0

(α1 + β1)
i

]
+ (α1 + β1)

hσ2
t .
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5.5.5 Example: GARCH Estimation

As an example of GARCH model estimation in EViews we consider a series of 2
minutes exchange rates between the Euro and the British Pound for 21 August 2007
between 7:00 and 16:00 GMT. The data is contained in the file EURGBP.wf1. Plot
of the EUR/GBP returns is given in Figure ??.

Figure 5.4: 2 minutes EUR/GBP returns on 21 August 2007
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We can clearly see periods of high and low volatility of the returns, thus an
ARCH type model can be appropriate to model volatility.

Let us first estimate an OLS regression of returns on a constant term. This
will give us an opportunity to test for the presence of ARCH effect more formally.
Having typed

ls r_eurgbp c

in the command line and pressed Enter, go to View/Residual Tests/ Het-
eroscedasticity Tests... in the equation object window and choose ARCH option
there. The test result is given in Figure ??

Figure 5.5: ARCH test results

The p-value of the test is very small which rejects the null hypothesis of ho-
moscedasticity of residuals in favor of ARCH alternative. Thus, based on this result
we decide to estimate regression with ARCH specification. Go to Quick/Estimate
Equation option of the main workfile menu and specify the model as you were
specifying it for the OLS regression. That is, type r_eurusd c in the Equation
Specification box. Now, in the Method field, choose ARCH – Autoregressive
Conditional Heteroscedasticity. This will open you more option for ARCH
model specification. In the ARCH-M we can indicate whether we want to include
ARCH-in-mean term in the equation and, if yes, whether variance or standard de-
viation should enter it. In the Variance and distribution specification part we
can select between simple ARCH/GARCH/TARCH model, EGARCH, PGARCH
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or two component GARCH model. We will stay with the simplest first option. In
the Order field we should write orders of ARCH and GARCH terms in the variance
equation. Let us specify GARCH(3,3) model, so enter 3 and 3 respectively in each
of the box. If we do not want to include GARCH terms, simply put 0 in front of the
GARCH field. Variance regressors box will be useful if we want to include some
exogenous variables in the variance equation. Errors distribution box allows us to
choose between Gaussian and Student - distributions of the error term. The model
estimation output is given in Figure ??.

Figure 5.6: GARCH estimation output

The resid terms of the output correspond to αi coefficients (ARCH terms) and
GARCH terms correspond to βi coefficients in (5.3.2).

We can see that α3 and β3 coefficients are statistically significant and α2 is on
a border line of significance.

In View/Representation section one can find the variance specification.
Also EViews allow to plot both standardized and on-standardized residual plots
(in Actual, Fitted, Residuals), test for parameter constancy, linear restriction,
build correlogram of residuals and squared residuals in the same way as it is done
for the OLS regression.

In order to estimate the above model using the command line one should type
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equation e.arch(3,3) r_eurgbp c

where the term arch indicates that an ARCH estimation method should be used,
order of the ARCH and GARCH terms follow in parentheses. Then you should
specify the conditional mean equation as it is done on the least squares model case
(the dependent variable should be in the first place).
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